
MetaFS - Indexed Metadata based Filesystem

Rene K. Mueller spiritdude@gmail.com

December 5, 2015 (PREVIEW)

Abstract

Ordinary computer file systems, as introduced in
the late 1950’s[1], structure data according to two
main types: folders and files. In order to make
data available at the file system level, the filename
or folder has to be descriptive and well organized
according to a certain schema.

Further, the actual content of a file is not known
to the file system, as file formats can only be read
and interpreted by third party programs, like a
text editor, a document viewer, an image viewer,
or a video player.

MetaFS is a file system which does not have
hierarchical constraints[10] as do traditional file
systems, but it has multiple or flexible views on
the files/items based on free definable metadata.
The metadata can either be added manually, or,
has been automatically extracted by handlers thus
making the common metadata of text, image,
audio, and video available as well. Additionally all
items have a globally unique identifier uid, which
means that an item can be shared globally and yet
kept in sync.

MetaFS has been implemented on top of
UNIX[2] file system[3].

1. Introduction

The ordinary computer file system contains the no-
tion of folders and files, whereas folders can contain
folders and files again. The problem arises when to
order or sort files according to a folder structure or
schema, one has to make a decision:

2015/

Client A/

Client B/

2016/

Client A/

Client B/

or

Client A/

2015/

2016/

Client B/

2015/

2016/

The choice to make is based on the constraints
of the folder & file notion - only two keys can be
used, and the order matters.

To open these constraints a file[5] has to have
more qualifiers or keys, hence free definable meta-
data.

2. Free Definable Metadata

The basis of MetaFS is that all files or items can
have free definable metadata; and for the sake of
simplicity the JSON (JavaScript Object Notion)[4]
is adapted which allows hierarchical metadata:

1

{

name: "AA.txt",

comment: "this is a test",

deeper: {

sample: "a bit deeper"

},

tags: [’example’, ’simple’],

size: 12,

uid: "83a414d816448c6337d2920c..",

}

2.1. Manually Entered Metadata

The user can manually enter metadata such as tags,
keywords, ratings, etc, to any item.

2.2. Automatic Created Metadata

Additionally handlers analyze common file formats
of text (.txt, .doc, .pdf, .odt etc), images (.png,
.jpg, .gif), audio (.m4a, .mp3, .ogg), video (.mp4,
.ogv, .webm, .mkv) and extract metadata:

• text: word, unique words, lines, pages, ex-
cerpt, etc.

• image: color type (black & white,
monochrome, limited color, full color),
color theme, width, height, EXIF data (GPS
coordinates) etc.

• audio: sampling rate, duration, song title,
artist, album, etc.

• video: duration, title, author, width, height,
etc.

3. Indexed Metadata

In order to provide flexible views instantly, all
metadata is indexed using B-tree[7]/LSM-tree[8]
storage engines; this provides fairly fast answers
to queries (match, inequality, range) within sub
100ms range.

4. Flexible Views

Once the metadata is fully indexed one can query
according to it quickly and provide a flexible view
on the items:

4.1. UNIX FS View

As a proof of concept of MetaFS the ”hierarchical
file system” or ”UNIX FS” view has been achieved
using the following keys:

• type: undefined or ’folder’

• name: filename (string)

• uid: uid of item (string)

• parent: uid of parent item (string)

• mtime: modification time (float)

• ctime: creation time (float)

• atime: access time (float)

whereas the root (top-level) of the file system is
referenced as parent: 0.

4.2. Timeline View

The timeline is shown via ctime or mtime sort view,
and this view is obtained as instantly as the ”UNIX
FS” view.

4.3. Various Views

All metadata is available to sort and view the
dataset of items:

• sort by size

• sort by MIME type

• sort by unique words (applies just to texts)

• sort by unique colors (applies just to images)

• sort by geographical location (applies to GPS
tagged items like photos)

• etc.

In this sense, an item can be viewed on all the
angles (keys) which one has specified.

2

5. Time of Origin (otime)

Amongst the known time stamps in UNIX ctime:
creation time, mtime: modification time, atime:
access time, an additional time is introduced:
otime origin time; when the data came to be

(media independent):

• text: when the text was originally written
(even before it was digitized)

• photo: when the photo was taken, this is often
the same as mtime when taken by an electronic
camera

otime is also the only time stamp which covers
the actual time of the data, inside or outside of
the file system; whereas ctime, mtime, and atime

just focus on the time data was handled in the file
system.
otime has been widely neglected and often mis-

taken by mtime (modification time), e.g. once a
photo was copied from one media to another and
mtime was neglected; depending on the program
and the file-browser, the date/time the photo was
taken could easily be lost as mtime was carelessly
updated to present time of copying.

By introducing otime it ensures semantically
that it really means the date/time the data came
to be, and mtime truly means the time the data
was modified in the file system.

6. Unique Identifier (uid)

The uid as used in MetaFS is globally unique,
which allows the identification of files beyond the
local file system, and, thus, the cooperating parties
can also sync the updates among themselves.

7. Hash Digest (hash) &
MIME Type (mime)

By default, all the files/items content is hash
digested[9] (e.g. SHA256) which helps in determin-
ing data integrity and in finding duplicates.

Further the MIME type[12] is determined by the
actual content (e.g. magic number or probing the
first 512 bytes) and only in case of uncertainty is
the filename extension (e.g. ”.txt”) considered.

8. Full Text Index & Search

Full text index & search (FTS) is also available and
by default all texts are fully indexed, and so textual
content can be looked up instantly as well.

9. Implementation

3

MetaFS has been implemented on top of the
LINUX file system Ext4 using FUSE (Filesytem
in Userspace)[6] and a custom NoSQL database
called MetaFS::IndexDB which indexes all keys by
default, while having a low memory footprint and
providing predictable response time of queries.

The full text search part is implemented using
Elasticsearch[11].

A fine-grained handler execution facility has
been implemented to execute handlers based on
MIME type and file system operation events like
(CREATE, OPEN, CLOSE, UPDATE, etc), ei-
ther synchronous (without queue), asynchronous
(queued) and additionally prioritized with a cer-
tain nice level.

The semantic layer as illustrated will be de-
scribed in another paper.

10. Conclusion

MetaFS as presented provides an in-depth access to
the data for the human beyond the simple folder &
file notion and makes it more available and com-
prehendible.

The traditional folder & file notion is usable
for the core of the operating system, whereas a
MetaFS-based filesystem is more suitable for the
user files (e.g. /home/user home directory).

References

[1] Barnard III, G. A.; Fein, L. (1958).
”Organization and Retrieval of Records
Generated in a Large-Scale Engineering
Project”. Proceedings of the Eastern Joint
Computer Conference: 5963.

[2] Ritchie, Thompson (1974), ”The UNIX
Time-Sharing System”

[3] McKusick, Joy, Leffler, Fabry (1984), ”A Fast
File System for UNIX”

[4] JSON Definition http://json.org

[5] Seltzer, Murphy (2006): ”Hierarchical File
Systems are Dead”

[6] Linux FUSE (Filesystem in Userspace)
http://fuse.sourceforge.net/

[7] Bayer, McCreight (1972), ”Organization and
maintenance of large ordered indexes” (B-tree)

[8] P. O’Neil, Cheng, Gawlick, E. O’Neil (1996),
”The log-structured merge-tree (LSM-tree)”

[9] Descriptions of SHA-256, SHA-384, and
SHA-512: http://www.iwar.org.uk/comsec/
resources/cipher/sha256-384-512.pdf

[10] Olson (1993), ”The Design and
Implementation of the Inversion File System”
http://db.cs.berkeley.edu/papers/S2K-93-28.pdf

[11] Elasticsearch http://elasticsearch.org

[12] IANA: Media Types (MIME Types)
http://www.iana.org/assignments/

media-types/media-types.xhtml

4

